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Abstract

We consider approximation of multivariate functions in Sobolev spaces by high
order Parzen windows in a non-uniform sampling setting. Sampling points are nei-
ther i.i.d. nor regular, but are noised from regular grids by non-uniform shifts of a
probability density function. Sample function values at sampling points are drawn
according to probability measures with expected values being values of the approx-
imated function. The approximation orders are estimated by means of regularity
of the approximated function, the density function and the order of the Parzen

windows, under suitable choices of the scaling parameter.
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1 Introduction and Formal Setting

We consider approximation of functions on R™ from samples of type z = {(x;,y;) }ican-
If f* is a function to be approximated, then on our setting described below, the sample
function value y; at the sampling point x; satisfies y; ~ f*(x;). In randomized sampling,

the sampling points {z;} are governed by some probability distributions.

In this paper we continue our study [11] on randomized sampling of functions on R”

by means of high order Parzen windows

foo(z) =Yy (x 95) ., zERM (1.1)
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Here ® : R” x R" — R is a window function, ¢ > 0 is a window width. Under some
conditions on the approximated function f*, window function ® and noise controlling
yi— [*(x;), the error in L*(R") between f* and f,, (with normalization) is analyzed in [11]
when {z;};czn is drawn randomly from a sequence of probability densities {p(- — hi) };czn
for some fixed density function p on R"™ and some grid size h > 0. In that setting, {x;} is

uniform in expectation: E(z;) = hi + E(p) for each i € Z".

The purpose of this paper is to establish improvements of the above result in two
directions. Firstly we consider a non-uniform setting in the sense that the sampling
points {z; };czn are drawn according to the probability density functions {p(- — t;)} with
non-uniform nodes {¢;} satisfying sup,cyn [t; — hi| < A. The quantity A > 0 measures the
degree of non-uniformality as in the literature of non-uniform sampling [1]. Secondly, we
estimate bounds the error in Sobolev spaces H*(R") by allowing s > 0, not only in the

space L?(R") with s = 0. To this end, the basic window function ® is defined in terms of

the index s. Throughout the paper, 0 < s < J are two integers. For a = (aq,--+ ,a,) €
Zt and x = (z',---,2") € R", we denote 2* = II}_,(2/)%, |a| = a1 + --- + o, and
D*®(z,u) = 5 (P(-, u))(2).

Definition 1. A function ® : R” x R" — R is called a basic window function of type
(J,s) if it satisfies

(i) [on ®(z,u)du=1 and [, P(z,u)(u—2)*du=0 for 0 < |a] < J,

(11) for some ¢ >n+J and ¢, > 0,

Cq

D*® < ————

Ve,u e R0 < |a] < s. (1.2)
Condition (i) above is called vanishing moment condition in the literature of multi-

variate approximation [3] or wavelets [4].

As in the literature of Shannon sampling [8] or online learning [9], we shall assume
throughout the paper that the sample z = {(z;,y;) }icz» is drawn independently from a
sampling sequence {p(®};cz» of probability measures on Z := R" x R associated with
(M, h, A, p).

Definition 2. Let M;A > 0, 0 < h < 1 and p be a probability density function on
R™. Fach x € R™ is assigned a Borel probability measure p, supported on [—M, M|, and
{t;}iezn C R™ is a sequence satisfying |t; — hi| < A for each i € Z". We call {p}iczn a
sampling sequence associated with (M, h, A, p) if for each i, the marginal distribution
pg? of p on R™ has density p(-—t;) and the conditional distribution of p at each x € R"

equals py.



Define a function f* to be approximated by

f(x) Z/Rydpx, r € R (1.3)

2 Main Result

Our main result provides bounds for the approximation of the function f* on R™ by
(normalized) f,,, in the Sobolev space H*(R") with norm || f | = &n) = >2|0<s 1D fll L2 ).

Denote the variance of p, by o2.

Theorem 1. Let ® be a basic window function of type (J,s). Assume f* € C/T5(R"),
p € C'T5(R™) and that for some n > 2n and ¢, > 0, each of the functions D*f*, D%p

with |a| < J + s and o2 satisfies the following decay condition

VaoeR" (2.1)

If A < hnrgi;), then by taking o = h#+27, for any 0 < & < 1, with confidence 1 — &, we

have

where 5(1,”,,7@3 15 the constant depending only on q,n,n, J,s.

C * ni=s) 2
S Oq,n,n,J,s {(1 + M)Cq + chgz + Cn”f ”HS(R”)} h nt+2J log 5

2

hnré]" fz,a - f*

He(R)

Theorem 1 will be proved in Section 4 with the constant 6q,n,'r], 7.5 given explicitly.

The idea of approximation in sobolev spaces can be used to learn norms of gradients

or o
Oz’ Oz

af*
oz

shall discuss details somewhere else.

for variable selection and inner products ( ) for studying covariances [5, 2]. We

It would be interesting to study the randomized sampling for dependent samples [10].

3 Sample Error and Approximation Error

The sample error refers to the difference between f, , and its data-free limit defined by
fo(z) = / (20 )Y plu—tydu,  weR" (3.1)
" oo iezn 7

It can be bounded by the following probability inequality for random variables with values
in a Hilbert space (see [7] or [6]).



Lemma 1. Let H be a Hilbert space and {&; }iczn be independent random variables on
Z with values in H. Assume that for each i, ||&| < M < oo almost surely. Denote
02 = icon E(JI&G]1?). Then for any 0 < § < 1, with confidence 1 — 4,

| X - B

In our setting, we take {&; }iczn to be the random variable on Z with values in the
Hilbert space H*(R™) given by

6= e (5 5) for () a
= e (55) - [ oG o) - @

Then we can apply Lemma 1 to obtain bounds for sample error. To this end, we need

‘ < 2M log(2/5) + /252 1og(2/9). (3.2)

the Sobolev space norm of the function ® (; ;)

Lemma 2. Let 0 < o < 1. If (1.2) holds, then for any x € R", we have
n_n/4
2¢c,(s + 1)"m 1y

Hq) (E%) o) = NOTEDRODI

where T'(t) is the Gamma function defined by T'(t) = [~ r*te~"dr for t > 0.

Proof. For any o € Z™ with 0 < |a| < s, we have

@G, = oo )

L2(R7) oo

2

L2(R7)

g

c? 2m"/2 2
< O_2|a/ —qdu < O_n72\oz| q )
(1 n |H|>2q (2¢ = n)l'(n/2)

Since 0 < o < 1, we have 02?1 < 5725 and the desired bound follows. O

Proposition 1. Let ® be a basic window function of type (J,s) and z be a sample. For

any 0 < 0 < 1, with confidence 1 — ¢, we have

8cy(s+ 1) rigs—s 2 /
=T og 5 M +2 ti)dx)® Y.
= R )T (n/2) Oga{ +( ot 2re gz;px x)}

Proof. Since p, is supported on [—M, M|, |f*(z)| < M for each z. By Lemma 2, the
random variable & = y;® (2, %) — [, ® (2, 2) p(z — t;) f*(x)dz with values in H*(R")
ey < M (2. 7)

LGl
o’ o) llgs@n n oo

AMey(s + 1)"7rn/40_
V/(2¢ = n)l(n/2)

||fZ,0_fa|

satisfies

p(x — ;)| f*(x)|dx

He(R")
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Write &; as
b= r@)e () s ree(52) - [ o2 -t @i

o o

Then we see from Lemma 2 that for each i € Z",

5=

2¢,(s + 1)/

V2 —n(nj2)

[ (@)|p(r —t; d$) < Jon 1F*(@)Pp(z — t;)dx that

) 12¢2(s + 1) 7"/ ”s
ZE(||§1’|H5(RH)) < g — )T (n/2) {/]R” (02 4+ 2| f*(x pr—t dx}a .

TEL™ iEL™
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oy < {li= P17+ [ 17 @t~ e}

It follows from ( Jen IS

Then our conclusion follows from Lemma 1. O]

Now we turn to the approximation error. We show that, f, tends to f*> ... p(- —1;)

in the space H*(R") as ¢ becomes small.

Proposition 2. Let ® be a basic window function of type (J,s) defined as Definition 1.
Define f, by (3.1). If the function f*, ;. p(-—t;) lies in H'T5(R™), then for any o < 1,
we have

fo— 0" (-

1€L™

n+J—s
HJ+5 Rn) ’

2. 37 Fsc, m/2s)
<
vs®r) — (g —J —n)I'(n/2) J"

(3.3)

Proof. Denote g(x) = f*(x) > ;czn P(x —t;). We apply a Taylor expansion to the function

folw) = [ af

Let u,z € R". Define a univariate function A : [0,1] — R as

)g(u)du.

Y
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h(t) = g(z + t(u — x)), t €10,1].

Then we have

J=1 () 1
g(u) =h(1) = ; h E!(O) + U i 0 /0 (1 —v)”'h9) (v)dv.
Since A(t) = 37, —(u — 2)*D?g(z + t(u — x)), we see
J-1
@) = [ #CHY 5 Y 0Dy



Since [p, ®(£,%)du = ", we know from Property (i) of the basic window function ® that

fo(z) = 0"9(:1:)+(J+1)! /01(1_U)J—1 3 {/HCI)(;g)(u—x)o‘Dag(x+v(u—x))du} .

laf=J

To compute the H*(R")-norm of f, — oc"g, we take 3 € Z satisfying |3| < s. We have
)(u—2)*D%g(x + v(u — x))du} = >

JIRE
w0 GRAELT jHE+I=

ﬂ /n O-—|j|Dj(I)(£’ E)L‘(—l)‘k‘(u _ J})a_k(l — y)ll\DO‘Hg(x +v(u — x))du.

QIQ

JlEN! o o (a—k)!
Thus HDﬁ —o"g HL2 (&) is bounded by
! ! | 1
Z Z . ém o T-1 ,/ (1 — o)1, s (v)dv,
la|=J j+k+I= ,6 ( - ) 0

where for v € (0,1),

Jagua@) = || [ DI0(E, )~ 2)* D gl + v(u — 2))du

R

B
Qe

L2(Rr)

We need to estimate J, ;x(v). By the Schwarz inequality

(Ja,j,k,l(v))Q = /n {/
I

Decay condition (1.2) of ® tells us that

J.

Make a variable change w = « + v(u — ). We see that

)a—k‘ du

— 2" |DHg(a + v — @) du} dz.

n/2 n+J— k]

la—k| ¢,
Di® ’ u—xakdu<0”+|a kl/ QALCZUS 4 .
Gl | o (L )™ S G k[ =T = n)T(n/2)

DJ<I> - ‘ |(w—2)* | | D" g(x + v(u — :U))}Zdu

< / %
T Jre (L [25F])

It follows from the Schwarz inequality that

2¢, /2 g+ T~k c ’u‘|a—k|
J% (v 2 < / Da+l n+|a—k|/ 29 dudw
Urasa ) < s || n

w—x

( )

()

DM g(w) !2 v " dw.




which is bounded by < 2cgm/ 20+~ k|

(q+|k|*J7n)F(n/2> 1D**g| 132 gn)- Therefore,

HDB - U g HLZ R")
3 Z 04! f! 1 1 2, w2+ lil= Ik 17|
la|=J j+k+i= B JRI(T = IV T+ U] (g + k| = J —n)(n/2) Il 2 @)

9. 3J+sc 7Tn/2$‘0' n+J—

(¢ —J —n)(n/2).J! Z 21D gl oy

lo|=J 1<

IN

Hence bound (3.3) for || f, — c"g|

He®Rn) = 2o|6|<s HD —o"g HL2 - follows. O

4 Deriving Convergence Rates

Combining Propositions 1 and 2, we obtain bounds for the total error.

Proposition 3. Under the assumption of Theorem 1, for 0 < o,h < 1 we have with
confidence 1 — ¢,

hn z,0 2 n _n_
‘ j; - f" <C(1+A)"log-h20727°
o He(R") 0
max {1, ol IR Aot Ao TR 02+sh3+1} (4.1)

where C' is a constant independent of 6, o, h or A.

Proof. Let us first refine the bound in Proposition 1. Since o2 and p satisfy decay condition
(2.1), we have for i € Z",

20(x — t;)d </ C" C" dz.
/n%p(l" Jdv < e (Lt |27 (T + Jo — i)

We divide R™ into two domains, one with |x — hi| > 2A and the other with |z — hi| < 2A.

When |z — hi| > 2A, we have |z —t;| > |z — hi| — [t; — hi| > |z — hi| — A > %]z — hil.
It follows that

Cn Cn / Cn Cn
dr < —dx
/xhi|22A (T+ J2[)7 (1 + [z — ] w (LA [z)7 (1 + 3|2 — hi])7

077 077 C77 Cn
= y dm—l—/ —dz
/x|>;h|z'| (L + (=) (1 + 3]z — hi])" al<inpi (L+ |27 (1 + 3|z — Ri|)n

Cn Cn Cn

C
< . —dx + ! - / dx
(1+ 3hli)" / (U 5lo = by (1 3ALD7 Jro (1 [])"
on+l.2.n/2 1 262 /2 1
L+ =hli])™"+ L+ —hli|)™"
(n—n)F(n/Z)( 2 i) (77—”>F(n/2)( 4 g



When |z — hi| < 2A, we have |z| > hli| — 2A. Thus if |i| > 22 we have |z| > 1h|i| and

Cn Cn Cn / Cn
de < - dx
/|m—hi<2A (L [z (1 + |z —t])" (L4 5hli))" Jon (14 |z —t;])7

20 sl

is bounded by W(l + 1nfi))="

If |i| < 42, we see that

/ cn ¢y i < / i dr < 2c2 /2
w—hil<2a (1 +[2])7 (1 + |z —t;])" re (14 |z[)7 (n —n)I'(n/2)

2c2 /2
is bounded by (n_r:]m

Applying the above estimates together with the following bound from [11]

(14 hli|)~7(1 +2A)".

27Tn/2

(n —n)I'(n/2)’

S+ %h|¢|)—" < (VA + 1) + (4/h)"

€L

we see that Y. ;. [o. 02p(x — t;)dx is bounded by

2 o 91 14 (1424) i s (82
CETINCTF ”{( n+>+(/)(n—n)F(n/2)}'

In the same way, > .z [on |/*(@)]*p(z — t;)dz is bounded by the above same expression
12 3
with ¢, replaced by ¢;.
Therefore from Proposition 1 we see that with confidence 1 — 9,

8cq(s + 1)ngn/4

n n 2
ro — follmsmny < M+ cpn(1+ A2V 2555 10g =, 4.2
| fao = foll s (mn) \/2_n n/Q{ nn ( )2} g5 (4.2)

where ¢, ,, is a constant given by

P 32 o) n/422+n/2{ . gn/2n/4 }
= Tt VY Tt )

In order to use Proposition 2, we need to bound the norm ||f* Y iezn (- — 1)

g HHHs(Rn)'
I Ziezn p(-—1t;) is bounded

HJ+S (Rn)

Applying decay condition (2.1) again, we see that ‘

by
2200+ + 13" /4

K V(27 —n)(n/2)

It follows from Proposition 2 that

‘ o= 0" "> p(:

n7rn/2
e e e

{2(J 4 ) + 1}37 s sl cin 3n/4

iezn 1H®) = (¢ —J —n)Jl\/(2n —n)l(n/2)T(n/2)
nod+n n 8" m"/? n+J—sp—n
(14 A)"2 {(\/ﬁ+1) +(n—n)F(n/2)}U " (4.3)
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Finally, we must study the difference between ). _,. p(- —t;) and >, _,. p(- — hi) by
the restriction sup; |t; — hi| < A. For x € R",

< 3 Ip(a — hi) — pla — hi— (t; — ha))|

iczn iezn iezn
= / Z (t; — ht)*D%p(x — hi — u(t; — hi))du
iezn la]=
nAc
< . du.
- lEZZ;/ (14 |z — hi — u(t; — hi)|)" "
For every € R", we can find some k € Z" such that z — hk € [-%, 2)". Then |z — hi| =

|x — hk + h(k — i)| > %]k — ilh. Separate Y, ,. into two parts > a—nij>2a (Where
|z — hi — u(t; — hi)| > |z — hi]| = A > 1|z — hi| for u € [0,1]) and D le—hil<an- We have

S ple—hi) = 3 pla—t)| <

> (Ba,

i€EZ™ i€Z™ i€zn (1 + 2’I |)
nAc, 4A
< —— + (—)"nAc
GZZ; 1+ Sk —ilh)n " h "
27Tn/28n

< {(\/ﬁ +1)" + =T (2) } ne,h " A + 4"ne, h A

Combining an estimation in [11] for ‘h” >

iezn W'p(x — hi) — 1‘, we have

1 <y {c) A+ 4"nA" + (], +n2"h" 1}

where ¢; , is the constant given by
277/28n }

= {2

This in connection with (4.2)and (4.3) tells us that with confidence 1 — §, the total error

H hee _ is bounded by

Hs(R™)

8c,(s + 1)nam/4
V(2q—n)l(n/2)
gl £ s { e n & + 4" A+ (], + 2" AT
2(J + s) 4+ 112375 sle, 2rdn/4 (1 + A)n24+n {npn/2
20 +5)+ 1) RSy (YR L S
(¢ — J —n)J'\/(2n — n)D(n/2)T(n/2) (n—n)l'(n/2)
So desired bound (4.1) holds true with the constant C' taken to be

n n 2
{M + cpn(1+ A)”/Q} hzo72"%log 5

C = 40cy(s +1)"{M 4 cyn} + cyll f* || gs@my{2¢), , + 14" +n2"}
+{2(J + 5) + 1337 sle, 22 { (Vi + 1)" + 8"} .

This proves Proposition 3. O



Now we can prove Theorem 1 easily.

. n(J—s) n n n
Proof of Theorem 1. Since A < h#+27 < 1 and ¢ = h"+27 and , we have c/*2h72 =1

and Ac2™h~2 = 1. So we get
max{1,JJ+5h_5,A05+5h_5,A"+105+5h_5,05+5h5+1} =1.

Then the conclusion of Theorem 1 follows from Proposition 3 with the constant

CQ,nm,J,s = 27 {40(8 + 1)” {1 + Cn,n} + ch%n 4 nd™ 4+ p2"
HR(T+ )+ 17875505 (4 1) 4 87])

The proof of Theorem 1 is complete. O
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